
NASA JPL Distributed Systems Technology (DST) Object-Oriented
Component Approach for Software Inter-operability and Reuse

Laverne Hall, Chaw-Kwei Hung
Phone: 818 393-5430

Fax: 818 393-4049
Laverne.Hall@jpl.nasa.gov

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Dr.
Pasadena, CA 91 109

Abstract

The purpose of this paper is to provide a description of NASA JPL Distributed
Systems Technology (DST) Section's object-oriented component approach to
open inter-operable systems software development and software reuse. It will
address what is meant by the terminology object component software, an
overview of the component approach and how it relates to software architecture
and reuse, the benefits of this approach, and examples of application
prototypes demonstrating its advantages.

The study scope of this paper, which includes rapid prototyping, focuses on
current and future of NASA JPL software development as it relates to:

How object component technology will be used in JPL software development
and operational environments

How it provides a framework for inter-operability and reuse of components
across subsystems for system upgrade and future migrations (i.e., establish
guidelines for using objectkomponents technology)

How it reduces development, testing, and maintenance relative to life-cycle
cost and time

How it avoids duplication or re-development efforts through building reusable
components and making existing software reusable where appropriate.

The infrastructure to support object component technology will be addressed
from various points of view: a) components development, b) application
development, c) configuration management (CM), and d) operations.

The required support environment and the procedures for developing new
software components and component deployment will also be addressed for a
UNlX environment. The Object Component Deployment Management System
(CDMS) for the object components for software reuse will be illustrated. It will
address the issues of developing components, accessing the components for
development and for operations, the component security, and the migration
path from the transitional to component-capable configuration management

1 O5/ 12/99

mailto:Laverne.Hall@jpl.nasa.gov

1 .

(CM) system. The CDMS consists of three major elements: (1) Component
Repository Manager (2) Runtime Loader and (3) Developer Studio. (See Figure
1 - A Pictorial Architecture of the Entire System.)

Component Repository Manager maintains a collection of components that are
available to be linked to applications, and provides methods to access those
stored components. Runtime Loader (ComRegCom) provides component
interface for applications to dynamically load other components from the
repository during runtime. Developer Studio is a development environment that
helps software developers to start building a component from templates.

Also a security component has been developed and will be used to verify the
authenticity or identity of components. This will allow applications to load
components at runtime from remote sources and retain confidence that the
received component is safe and from a known user.

Utilization of the object-oriented component technology approach for system
development and software reuse will apply to several areas within JPL, and
possibly across other NASA Centers, for example:

NASNJPL Telecommunications & Mission Operations Directorate (TMOD)
Deep Space Network (DSN)

NASNJPL Flight Software - Mission Data Systems (MDS)

2 051 1 2/99

Other technology and applications programs [ex., NASNJPL Technology &
Applications Programs (TAP) Distributed Modeling Infrastructure (DMI),
Department of Defense (DOD), etc.].

3 051 12/99

NASA JPL Distributed Systems Technology (DST) Object-Oriented
Component Approach for Software Inter-operability and Reuse

Laverne Hall
Distributed Computing & Systems Engineering Group, JPLKaltech

Pasadena, CA 91109-8099, USA

And

Chaw-Kwei Hung (& Imin Lin, JPL Contractor)
DC&SE Group, JPLKaltech, 4800 Oak Grove Drive,

Pasadena, CA 91109-8099, USA

ABSTRACT

The purpose of this paper is to provide a description of
NASA JPL Distributed Systems Technology (DST)
Section's object-oriented component approach to open
inter-operable systems software development and software
reuse. It will address what is meant by the terminology
object component software, give an overview of the
component-based development approach and how it
relates to infrastructure support of software architectures
and promotes reuse, enumerate on the benefits of this
approach, and give examples of application prototypes
demonstrating its usage and advantages.

Utilization of the object-oriented component technology
approach for system development and software reuse will
apply to several areas within JPL, and possibly across
other NASA Centers.

Keywords: Software reuse, inter-operability, object-
oriented, object component software, component-based
development, infrastructure, distributed systems, and
prototypes.

1. BACKGROUND & INTRODUCTION

The Distributed Computing & Systems Engineering
Group within the Network & Distributed Systems
Technology (DST) Section of JPL provides advanced
research solutions to software architectures via
infrastructure development and prototypes using new
technology for task insertion and provides development
and integration & test support to implementation teams
using these solutions. Many solutions are centered
around the use of an advanced object-oriented distributed
systems approach, currently object-oriented component-
based software in particular, with code, templates,
supporting framework, and sample application prototypes
provided.

The study scope of this paper, which includes rapid
prototyping, focuses on current and future NASA JPL
software development as it relates to:

How object component technology can be used in JPL
software development and operational environments,

How it provides a framework for inter-operability and
reuse of components across subsystems for system
upgrade and future migrations (i.e., establish guidelines
for using objectlcomponents technology),

How it reduces development, testing, and maintenance
relative to life-cycle cost and time, and

How it avoids duplication or re-development efforts
through building reusable components and making
existing software reusable where appropriate.

The framework or infrastructure to support object
component technology focuses on a UNIX environment
and will be addressed relative to various perspectives
through-out several sections of this paper: a)
components development, b) application development, c)
configuration management (CM), and d) operations.

The required support environment and the procedures for
developing new software components and component
deployment will also be addressed for a UNM
environment via the Object Component Deployment
Management System (CDMS). It will address the issues
of developing components, accessing the components for
development and for operations, the component security,
and the migration path from the transitional to
component-capable configuration management (CM)
system.

2. COMPONENT SOFTWARE APPROACH

Distributed computing allows modern software structure
to occur across distributed networks in an increasingly
flexible and effective manner. Software component

technology allows distributed application pieces to
flexibly be reused, inter-operate, and evolve over time.
Figure 1 shows the evolution (most current progressing
towards the left direction) of network infrastructure
technology support for distributed computing and how
the trend has gone from proprietary methods to
continuous improvements using open standards.

I Distributed Comoutina Technoloav Evolution

' I

Figure 1. Distributed Computing technology Evolution

The component software approach promotes object-
oriented component-based technology and architecture
development into software development. It provides a
standard framework or infrastructure for building and
using software components to save time and money.
The tasks promoting this approach also provide
prototyped reusable generic object-oriented software
components for common services (both communications
and application services) needed by many
Telecommunications & Mission Operations Directorate
(TMOD) Deep Space Network (DSN) subsystems and
other Technology & Applications Programs (TAP).

The top portion of Figure 2 gives a pictorial view of the
goal to move from a traditional monolithic type
application composed of a single binary file to
applications which can be easily configured (static or
dynamic, local or remote) from a library of components
providing common services across applications.
Applications would reduce their focus to developing
custom or application-specific components to plug-and-
play with the generic functional services components.

Figure 2. Object Component Architecture Concept

The objective is to design application software from a set
of functional software components. Each software
component has a well-defined interface that encapsulates a
distinct operation. This is a similar process as to
constructing a hardware circuit board with the hardware
architecture equating to the elements of a software
architecture using components (see bottom portion of
Figure 2).

A component can be designed to contain a multitude of
related functions part of its capabilities (example,
communications services component). Figure 3 depicts
the fundamental structure of a generic functional
component which can provide a variety of related services
within the same component allowing different users to
configure or initialize the same component to activate
preferential modes of sub-services. The component entry
point is a register addressing scheme or structure dehed
by Microsoft's Component Object Model (COM) and in
this work, used in a C++ UNIX development
environment only. The component entry point indexes
to special routines making-up the varied functionality of
the component and allows routines to be upgraded or
swapped-out of the component without the application
setup changing as long as the routine address does not
change.

General component structure

Component entry point /
1 Code of routine 1

I Code ofroutine 3 I
Figure 3. Generic Component Software Structure

Component Software Approach Benefits
All benefits of using the oo-component software
approach lead to cost and time savings through-out
various phases of the life-cycle of any system:

1) Inter-operability - Execute old with new and across
different communication domains; due to need to
operate or transition legacy subsystems and custom
protocols.

2) Extensibility - Easy to design into new components;
new components can reuse existing components.

3) Easy Reuse - Develop once and use many times.
Component framework makes reuse easy.

4) Easy Assembly - Components can be added after
delivery, like the plug-in capability of Netscape.

Runtime Flexibility - Components can be
static/dynamic linked and dynamically
loadedhwapped as the program runs (Adaptability),
provides flexibility of building different software
architectures.
Enforce Object-Oriented Design (as standard) -
Component is really a specialized Object structure
(although it can be implemented as non-object).
Development Flexibility - allows independent
development environments and different
implementations of services, if needed.

This approach can allow application configurations to be
produced quickly and can result in higher quality, more
reliable software.

3. FRAMEWORK & INFRASTRUCTURE

The Distributed Systems Technology (DST) component
framework provides C++ UNIX environment
development support and allows for the incorporation of
different COTS products and middlewares (ex., CORBA
or DCE) into the system architecture. The framework
includes templates for building the three types of
component design patterns which are depicted in Figure
4. The component templates provide developers an easy
way to start building a component for their applications.
The basic component is the simplest form while the
containment pattern allows you to add new functional
interface(s) to the component without directly exposing
the interface(s) to existing functionality. The
aggregation pattern is probably the most efficient and
desired method and which minimizes the need for code
rebuilds. This pattern exposes existing component
interfaces to applications when new functional interfaces
are being added. The usage of these template types is
fully covered in the User's Guide for this effort.

T"
Basic Component r-l

Figure 4. Software Component Design Patterns

All the pseudo names in the template files can be
manually replaced. However due to the number of names
to be replaced and the number of files involved, our
experience tells us that the replacement can become time
consuming and error prone. To make the task easier and
to eliminate the human operation errors, tools may be
developed to automate the entire process (can be part of
Developer's Studio in later section on Component
Deployment Management System).

The DST component framework can be viewed as layered
expandable building blocks of features and services which
interact or connect with various other parts of the
framework to provide a suite of component development
and runtime support capabilities for a variety of software
applications and architectures (see Figure 5). Many
support features listed in the diagram (such as component
locating, retrieving, loading, registration, basic security
or authentication, etc.) have been prototyped and
demonstrated by DST team-members. Other support
features listed in the figure are under research and design
considerations as a part of ongoing and future
developments.

Figure 5. DST Component Framework

The investigation of commercial-off-the-shelf (COTS)
software continues for products to support the component
framework in a UNIX environment (SoftwareAG,
COM/DCOM, etc.). Other COTS being looked at for
possible utilization include Rational Rose, via the
Unified Modeling Language (UML), to create in-process
component templates and to generate modeling scripts
(example, to be used by our Distributed Modeling
Infrastructure - DM1 task which connects separate
simulation tools into a cohesive framework for end-to-
end space mission simulation).

4. APPLICATIONS & PROTOTYPES

Utilization of the object-oriented component technology
approach for system development and software reuse will
apply to several areas within JPL, and possibly across
other NASA Centers, for example:

NASNJPL Telecommunications & Mission
Operations Directorate (TMOD) Deep Space Network
(DSN)

NASNJPL Flight Software - Mission Data Systems
(MDS)

Other technology and applications programs [ex.,
NASNJPL Technology & Applications Programs (TAP)
Distributed Modeling Infrastructure (DMI), Department
of Defense (DOD), etc.].

The DST systems engineering and prototyping team has
developed and demonstrated actual component object code
for several generic services which can be configured for
use by many applications within scientific space and
ground systems. Software components for generic
communications inpudout, smart monitor & control,
data manipulation via a symbol table and expression
evaluator, security, constraints, and so on have been
developed by reusing existing code, incorporating both
COTS and in-house implementations for rapid prototype
cost and time savings.

Generic Monitor & Control (M&C) - Example

The example shown in this subsection consists of
reusable components configured for smart monitoring and
control in any application requiring such functionality.
The two components, PublisldSubscribe and Symbol
TableExpression Evaluator, used in this example and
their interfaces are depicted in Figure 6 using
conventional object-interface diagrams.

Example of Two Components Built

Identified 4 Interfaces
(well defined)

MON- 1
Publish/ MoN-l

Figure 6. Example of Two Components Built

The functionality or services provided by the two
components can be described as follows:

GIOMONl (Generic I/O for M&C within the DSN)

- Publish and Subscribe: Provides the DSN
Common Software Monitor and Control Data Publishing
and Data Subscribing functions. GIOMONl is
implemented by using the DSN Monitor and Control
Infrastructure Services (MCIS) Common Software.

EVALUATOR (supports smart M&C)
- Symbol Table and Expression Evaluator: Provides

an object to hold a collection of data of various types.
All data in Symbol Table can be used as operand in
expressions that can be evaluated by Evaluator.

A simple typical smart M&C operational scenario for
using these components across remote, local, or same
machines (say for spacecraft subsystems M&C) is
illustrated in Figure 7 and summarized as follows:

The Monitor Data Server is a focal-point for the
collection and distribution of various types of
information on subsystems within the DSN.

One DSN subsystem (left-most) periodically publishes
a list of monitor data items (ex., spacecraft power,
temperature, and memory utilization) to the MDS.

Another subsystem (bottom-most) publishes a policy,
at given times, of how the data is to be used; i.e., what
decision or action should take place under certain
conditions.

Any subsystem subscribing to continuously updated
data and/or policies of interest published to MDS use the
data and policy (stored in a symbol table) to perform an
expression evaluation (data plugged into policy) to
determine appropriate commands based on results (ex.,
spacecraft power below certain threshold, switch to
backup supply).

Generic Monitor and Control
PublSub Component

Figure 7. Sample Application - Generic M&C

5 . COMPONENT DEPLOYMENT
MANAGEMENT SYSTEM

The required support environment and the procedures for
developing new software components and component

deployment will also be addressed for a UNIX
environment. The Object Component Deployment
Management System (CDMS) for the object components
for software reuse is a system that provides a central
repository for all the components and the interface to
access the repository. It will address the issues of
developing components, accessing the components for
development and for operations, the component security,
and the migration path from the transitional to
component-capable configuration management (CM)
system. The CDMS consists of three major elements: (1)
Component Repository Manager (2) Runtime Loader and
(3) Developer Studio (see Figure 8 for a depiction of the
architecture for the entire system).

Figure 8. Component Deployment Management System

These three subsystems may work stand alone to suit
specific need or be integrated as a suite to provide
complete functionality.

As the core part of the Runtime Loader, ComRegCom is
a special component that handles the registration and
dynamic loading of the available components in a
system, which may consist of multiple hosts in a
network. Runtime Loader (ComRegCom) provides
component interface for applications to dynamically load
other components from the repository during runtime.

The component registry is a file (database for future
work) where users can specify the name, the location, and
other information for a component. The registry M I
allows ComRegCom to access the component registry so
it can find the location of a component and load the
component in during runtime.

All the components that are to be used must be specified
in the component registry. Then the applications can
instanciate the components via CoCreateInstance()
function call provided by ComRegCom. This function

call dynamically loads the desired component during
runtime.

Component Repository Manager maintains a collection
of components that are available to be linked to
applications, and provides methods to access those stored
components.

ComRegShell is a lower layer in Component Repository
Manager. It provides API to access the component
repository that contains the registry and available
components. A upper layer front end, which can be a
friendly graphical user interface or an application, can be
built on top of ComRegShell to allow user to manage
the repository.

The Developer Studio is a development environment that
helps software developers to start building a component
from templates. The Developer’s Studio is a future area
of development which can use the three component
template types mentioned in the previous Framework &
Infrastructure section of this paper.

Also a Security Component has been developed and will
be used to verify the authenticity or identity of
components. This will allow applications to load
components at runtime from remote sources and still
retain confidence that the received component is safe, i.e.
from a known user and has not been altered in any way.

The detailed design document for CDMS will include
details on the overall system architecture (software
hierarchy or implementation layout), functional
description on each software element and how each
element interacts with one another. It should also
include the design specification on each software element.

6 . STATUS AND FUTURE WORK

Utilization of DST’s recommendation of the object-
oriented component technology approach for system
development and software reuse is being incorporated into
system design considerations in several areas within JPL.
In addition to TMODDSN applications, TAP’S
Distributed Modeling Infrastructure (DMI) task plans to
use this approach and incorporate the Component
Registration Component (ComRegCom) as one of its
core enablers under infrastructure support to
collaboratively bring together different mission
simulation packages. Also for consideration by other
projects, such as Mission Data Systems (MDS), ground
simulations can be built as a scripting of components
and these components can be used in flight if the
platform is compatible or at least it can be mapped into
an on-board component.

Quite a bit of work has been completed via rapid
prototyping and demonstration of generic reusable
services and the supporting reusable infrastructure or
framework to promote an object-oriented component
approach to developing science-based applications in a
UNIX environment. Some planned areas of continuation
for the Component Deployment Management System
(CDMS) task for framework support include the
following:

1. Component Repository Manager - Migrate
component repository into database structure.

2. Component Repository Manager - Enhance user
interface via GUI or Web.

3. Developer Studio - Add preliminary GUI front-end
to drive scripts for component templates.

4. Security Protocol -Wrap higher level security
protocols, such as Secure Socket Layer (SSL), into
components.

7 . ACKNOWLEDGMENTS

We acknowledge the significant technical contributions
made to these efforts by Imin Lin, past JPL lead
software systems engineer and current part-time support
contractor to JPL. Also, thanks are extended to
prototyping contributions made by the technical
development team-members: Judy Yin, Amalaye Oyake,
and Chialan Hwang.

8. CONCLUSIONS

The objective of DST’s reuse and object-oriented
component approach is to provide advanced technical
solutions via software prototypes and supporting
framework, allowing tasks to concentrate on their
application-specific domain solution(s). Most scientific
software system applications can be built with object-
oriented components, supporting framework, and design
patterns. The use of the component object approach
allows for emerging technologies through careful design
of interfaces. Major task functional blocks of systems
can be implemented as plug-in modules (Components).

9. REFERENCES

The following are references use to support this work

[11 Dale Rogerson, Inside COM (Microsoft’s Component
Object Model), Washington: Microsoft Press, 1997.

[2] Dr. Richard Grimes, Professional DCOM
Programming, Canada: Wrox Press Ltd., 1997.

[3] Stanley B. Lippman & Jose’e Lajoie, C++ Primer -

[4] Terry Quatrani, Visual Modeling with Rational Rose
31d Ed., Addison-Wesley, 1998.

& UML, Addison-Wesley, 1998.

